Math 255A Lecture 13 Notes

Daniel Raban

October 26, 2018

1 Non-Solvability of Lewy's Operator

1.1 Continuity of bilinear forms

Here is a slight reformulation of a theorem we proved last lecture.

Theorem 1.1. Let E be a locally convex space with the topology defined by countably many seminorms (not necessarily Hausdorff), F be a Fréchet space, and let G be locally convex space. Let $B: E \times F \to G$ be bilinear such that for all $x \in E$, $y \mapsto B(x,y)$ is continuous. If B is not continuous, then the set of all $y \in F$ such that $x \mapsto B(x,y)$ is continuous is a set of the first category.

The proof is roughly the same, as well. We sketch it briefly.

Proof. Let $A_j = \{y \in F : B(x,y) \in \overline{U} \ \forall x \in V_j\}$, where U is a neighborhood of 0 in G and V_j form a fundamental system of neighborhoods of 0 in E. Then A_j is closed, convex, and symmetric. We claim that if $y \in F$ is such that $x \mapsto B(x,y)$ is continuous, then $y \in A_j$ for some j. If A_j has a nonempty interior for some j, then B is continuous. Thus if B is not continuous, the set $\{y \in F : x \mapsto B(x,y) \text{ continuous}\} \subseteq \bigcup_j A_j$ is of the first category. \square

1.2 Non-solvability of Lewy's operator

Theorem 1.2 (H. Lewy, 1957). There exists $f \in C^{\infty}(\mathbb{R}^3)$ such that the differential equation $Pu = (D_{x_1} + iD_{x_2} + 2i(x_1 + ix_2)D_{x_3})u = f$ does not have a distributional solution u in any neighborhood of 0. Here, $D_{x_i} = \partial_{x_i}/i$.

Remark 1.1. One can show that this differential equation cannot be solved in any open set in \mathbb{R}^3 .

Proof. This argument is due to Hörmander. Let $\Omega \subseteq \mathbb{R}^3$ be an open neighborhood of 0. What it means for $u \in D^1(\Omega)$ to solve this equation is that for all test functions $\varphi \in C_0^{\infty}(\Omega)$,

$$\underbrace{P_u(\varphi)}_{u(-P\varphi)} = f(\varphi) = \int f\varphi \, dx.$$

Therefore, for any compact set $K \subseteq \Omega$, there exist C, m such that

$$|f(\varphi)| \leq C \sum_{|\alpha| \leq m} \sup_{K} |\partial^{\alpha}(P\varphi)|$$

when $\varphi \in C_0^{\infty}(\Omega)$ with supp $(\varphi) \subseteq K$.

Let $W = \{ \varphi \in C_0^{\infty}(\Omega) : \operatorname{supp}(\varphi) \subseteq L \}$ with the locally convex topology given by the seminorms $\varphi \mapsto \sum_{|\alpha| \leq m} \sup |\partial^{\alpha} P \varphi|$ (only countable many seminorms occur). $F = C^{\infty}(\mathbb{R}^3)$, which is Fréchet. Now consider the bilinear map $B : E \times F \to \mathbb{C}$ given by $(\varphi, f) \mapsto \int f \varphi \, dx$. B is continuous in f for any fixed φ . B is also continuous in φ if the equation Pu = f has a solution $u \in D^1(\Omega)$, in view of the above inequality.

We claim that the map B is not continuous provided that $0 \in \text{int}(K)$. Assume that B is continuous. Then there exist a compact $L \subseteq \mathbb{R}^3$, C, and m such that

$$|f(\varphi)| \le C \left(\sum_{|\alpha| \le m} \sup |\partial^{\alpha} P \varphi| \right) \left(\sum_{|\alpha| \le m} \sup_{L} |\partial^{\alpha} f| \right)$$

for all $\varphi \in C_0^{\infty}$ with supp $(\varphi) \subseteq K$ and $f \in C^{\infty}(\mathbb{R}^3)$.

The idea is to show that the estimate is not valid by constructing a quasimode of P; we want to have φ such that $P\varphi \approx 0$ and $\varphi \approx 1.$ The form of P gives us that $P(x_1^2 + x_2^2 + ix_3) = 0$. Consider

$$w(x) = \frac{1}{i} \left[-x_1^2 - x_2^2 - ix_3 + (x_1^2 + x_2^2 + ix_3)^2 \right].$$

This satisfies Pw=0. Note that $w=\frac{1}{i}\left[-|x|^2-ix_3+O(|x|^3)\right]$, so $\mathrm{Im}(w)=|x|^2+O(|x|^3)\sim |x|^2$ near 0. Let $\chi\in C_0^\infty(\mathbb{R}^3)$ be such that $\chi=1$ near 0 and such that $\mathrm{Im}(w)\geq |x^2|/2$ on $\mathrm{supp}(\chi)$. Let $V_\lambda(x)=\chi(x)e^{i\lambda w(x)}\in C_0^\infty$ with $\lambda\gg 1$. Then $\mathrm{supp}(v_\lambda)\subseteq K$, and $|v_\lambda|\sim e^{-\lambda|x|^2}$. Take $v_\lambda=\varphi$ in the inequality. Then $Pv_\lambda=(P\chi)e^{i\lambda w}=O(e^{-c\lambda})$ with c>0. We get

$$\sum_{|\alpha| \le m} \sup |\partial^{\alpha} P \varphi| = O(\lambda^m e^{-c\lambda}) \xrightarrow{\lambda \to \infty} 0.$$

Take $f(x) = f_{\lambda}(x) = e^{i\lambda x_3} \lambda^3 h(\lambda x)$ for $0 < h \in C_0^{\infty}$ with $\int h = 1$. The right hand side in the inequality is $O(\lambda^m e^{-c\lambda} \lambda^{3+M})$, which goes to 0 as $\lambda \to \infty$. The left hand side is

$$\int e^{i\lambda x_3} \lambda^3 h(\lambda x) \chi(x) e^{i\lambda w(x)} dx = \int e^{ix_3} h(x) \chi(x/\lambda) e^{i\lambda w(x/\lambda)} dx \xrightarrow{\lambda \to \infty} \int h = 1.$$

We get that the set of $f \in C^{\infty}$ such that the equation pu = f has a solution $u \in D^1(\Omega)$ is of the first category.

 $^{^{1}}$ Up to this point in the proof, we have not used the form of the operator P at all. This argument shows that if we can find a quasimode for any operator P with this property, then we can show that P has no solutions in this sense.