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1 Non-Solvability of Lewy’s Operator

1.1 Continuity of bilinear forms
Here is a slight reformulation of a theorem we proved last lecture.

Theorem 1.1. Let E be a locally convex space with the topology defined by countably many
seminorms (not necessarily Hausdorff), F be a Fréchet space, and let G be locally convex
space. Let B: E x F — G be bilinear such that for all x € E, y — B(z,y) is continuous.
If B is not continuous, then the set of all y € F' such that x — B(z,y) is continuous is a
set of the first category.

The proof is roughly the same, as well. We sketch it briefly.

Proof. Let A; ={y € F: B(z,y) € UVz € V;}, where U is a neighborhood of 0 in G and
V; form a fundamental system of neighborhoods of 0 in E. Then A; is closed, convex, and
symmetric. We claim that if y € F' is such that  — B(x,y) is continuous, then y € A; for
some j. If A; has a nonempty interior for some j, then B is continuous. Thus if B is not
continuous, the set {y € F': x — B(x,y) continuous} C J; A; is of the first category. [

1.2 Non-solvability of Lewy’s operator

Theorem 1.2 (H. Lewy, 1957). There exists f € C°°(R3) such that the differential equation
Pu = (Dy, + 1Dy, + 2i(x1 + ix2)Dyy)u = f does not have a distributional solution u in
any neighborhood of 0. Here, Dy, = Oy, /1.

Remark 1.1. One can show that this differential equation cannot be solved in any open
set in R3.

Proof. This argument is due to Hérmander. Let © C R3 be an open neighborhood of 0.
What it means for u € D(Q) to solve this equation is that for all test functions ¢ € C§°(Q),

Pule) = f0) = / fod.
——

u(—Pyp)



Therefore, for any compact set K C 2, there exist C, m such that

(@) <C Y sup|9*(Py)

|| <m

when ¢ € C5°(2) with supp(¢) C K.

Let W = {¢ € C§°(2) : supp(yp) € L} with the locally convex topology given by
the seminorms ¢ — 37, <, sup [0“Py| (only countable many seminorms occur). F =
C>(R3), which is Fréchet. Now consider the bilinear map B : E x F — C given by
(¢, f) — [ fedz. B is continuous in f for any fixed ¢. B is also continuous in ¢ if the
equation Pu = f has a solution u € D'(), in view of the above inequality.

We claim that the map B is not continuous provided that 0 € int(K). Assume that B
is continuous. Then there exist a compact L C R3, C, and m such that

@I <O > suwplo“Pel | [ D sup|o*f|
|| <m la|<m L
for all ¢ € C5° with supp(¢) C K and f € C°(R3).
The idea is to show that the estimate is not valid by constructing a quasimode of

P; we want to have ¢ such that Pp ~ 0 and ¢ ~ 1.! The form of P gives us that
P(z3 4+ 23 +ix3) = 0. Consider

w(z) =< [—2f — x3 —ixs + (22 + 23 + ix3)2} )

This satisfies Pw = 0. Note that w = I [~[z|? —iz3 + O(|z[®)], so Im(w) = |z|* +
O(|z|®) ~ |z|? near 0. Let x € C5°(R3) be such that y = 1 near 0 and such that Im(w) >
|22|/2 on supp(x). Let Vi(z) = x(2)e?*® € C$° with X > 1. Then supp(vy) C K, and
lua| ~ e =* . Take vy = ¢ in the inequality. Then Pvy = (Py)e* = O(e~%") with ¢ > 0.
We get

Z sup |0 Pyp| = O(\"e™) 270,

lo|<m
Take f(z) = fi(x) = e?*3A\3h(Az) for 0 < h € C§° with [ h = 1. The right hand side in
the inequality is O(A™e~*\3tM) | which goes to 0 as A — oo. The left hand side is

/eMm?’)\?’h()\ZE)X(l')eMw(w) dr — /ez’mh(x)x(x/)\)ei)\w(w/)\) dz H—OO) /h =1.

We get that the set of f € C™ such that the equation pu = f has a solution u € D!(Q)
is of the first category. O

LUp to this point in the proof, we have not used the form of the operator P at all. This argument shows
that if we can find a quasimode for any operator P with this property, then we can show that P has no
solutions in this sense.
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